96 research outputs found

    Optimization, Learning, and Games with Predictable Sequences

    Get PDF
    We provide several applications of Optimistic Mirror Descent, an online learning algorithm based on the idea of predictable sequences. First, we recover the Mirror Prox algorithm for offline optimization, prove an extension to Holder-smooth functions, and apply the results to saddle-point type problems. Next, we prove that a version of Optimistic Mirror Descent (which has a close relation to the Exponential Weights algorithm) can be used by two strongly-uncoupled players in a finite zero-sum matrix game to converge to the minimax equilibrium at the rate of O((log T)/T). This addresses a question of Daskalakis et al 2011. Further, we consider a partial information version of the problem. We then apply the results to convex programming and exhibit a simple algorithm for the approximate Max Flow problem

    Hierarchies of Relaxations for Online Prediction Problems with Evolving Constraints

    Get PDF
    We study online prediction where regret of the algorithm is measured against a benchmark defined via evolving constraints. This framework captures online prediction on graphs, as well as other prediction problems with combinatorial structure. A key aspect here is that finding the optimal benchmark predictor (even in hindsight, given all the data) might be computationally hard due to the combinatorial nature of the constraints. Despite this, we provide polynomial-time \emph{prediction} algorithms that achieve low regret against combinatorial benchmark sets. We do so by building improper learning algorithms based on two ideas that work together. The first is to alleviate part of the computational burden through random playout, and the second is to employ Lasserre semidefinite hierarchies to approximate the resulting integer program. Interestingly, for our prediction algorithms, we only need to compute the values of the semidefinite programs and not the rounded solutions. However, the integrality gap for Lasserre hierarchy \emph{does} enter the generic regret bound in terms of Rademacher complexity of the benchmark set. This establishes a trade-off between the computation time and the regret bound of the algorithm

    Online Nonparametric Regression

    Get PDF
    We establish optimal rates for online regression for arbitrary classes of regression functions in terms of the sequential entropy introduced in (Rakhlin, Sridharan, Tewari, 2010). The optimal rates are shown to exhibit a phase transition analogous to the i.i.d./statistical learning case, studied in (Rakhlin, Sridharan, Tsybakov 2013). In the frequently encountered situation when sequential entropy and i.i.d. empirical entropy match, our results point to the interesting phenomenon that the rates for statistical learning with squared loss and online nonparametric regression are the same. In addition to a non-algorithmic study of minimax regret, we exhibit a generic forecaster that enjoys the established optimal rates. We also provide a recipe for designing online regression algorithms that can be computationally efficient. We illustrate the techniques by deriving existing and new forecasters for the case of finite experts and for online linear regression

    Competing With Strategies

    Full text link
    We study the problem of online learning with a notion of regret defined with respect to a set of strategies. We develop tools for analyzing the minimax rates and for deriving regret-minimization algorithms in this scenario. While the standard methods for minimizing the usual notion of regret fail, through our analysis we demonstrate existence of regret-minimization methods that compete with such sets of strategies as: autoregressive algorithms, strategies based on statistical models, regularized least squares, and follow the regularized leader strategies. In several cases we also derive efficient learning algorithms

    Online Learning: Beyond Regret

    Get PDF
    We study online learnability of a wide class of problems, extending the results of (Rakhlin, Sridharan, Tewari, 2010) to general notions of performance measure well beyond external regret. Our framework simultaneously captures such well-known notions as internal and general Phi-regret, learning with non-additive global cost functions, Blackwell's approachability, calibration of forecasters, adaptive regret, and more. We show that learnability in all these situations is due to control of the same three quantities: a martingale convergence term, a term describing the ability to perform well if future is known, and a generalization of sequential Rademacher complexity, studied in (Rakhlin, Sridharan, Tewari, 2010). Since we directly study complexity of the problem instead of focusing on efficient algorithms, we are able to improve and extend many known results which have been previously derived via an algorithmic construction

    Relax and Localize: From Value to Algorithms

    Full text link
    We show a principled way of deriving online learning algorithms from a minimax analysis. Various upper bounds on the minimax value, previously thought to be non-constructive, are shown to yield algorithms. This allows us to seamlessly recover known methods and to derive new ones. Our framework also captures such "unorthodox" methods as Follow the Perturbed Leader and the R^2 forecaster. We emphasize that understanding the inherent complexity of the learning problem leads to the development of algorithms. We define local sequential Rademacher complexities and associated algorithms that allow us to obtain faster rates in online learning, similarly to statistical learning theory. Based on these localized complexities we build a general adaptive method that can take advantage of the suboptimality of the observed sequence. We present a number of new algorithms, including a family of randomized methods that use the idea of a "random playout". Several new versions of the Follow-the-Perturbed-Leader algorithms are presented, as well as methods based on the Littlestone's dimension, efficient methods for matrix completion with trace norm, and algorithms for the problems of transductive learning and prediction with static experts
    • …
    corecore